Density-gradient-free solutions for cell isolation MACS[®] Cell Separation Technology

Kristina Kremer, Global Product Manager Cell Separation August 2020

Agenda

- Miltenyi Biotec pioneer in cell research and therapy
- **Blood products as starting material**
- **Density-gradient centrifugation**
- **Cell isolation of PBMCs and immune cells**
- Automated cell isolation

Empowering discovery Advancing therapy

Our mission is to advance scientific research and medicine by providing solutions for curative cell and gene therapy as well as biomedical research.

Over three decades of expertise and Pioniergeist

MACS[®] Technology: Based on 3 components.

MACS[®] Technology: 3 easy steps to viable cells for cell and gene therapy.

Why do we use MACS Columns?

Amplification of the gradient of the magnetic force by 10,000-fold.

Minimal labeling with nano-sized MicroBeads (50 nm).

Free flow through.

Cell-friendly hydrophilic coating.

Thorough washing for removal of cell debris and contaminants.

MACS Columns enable cell separation with minimal effect on cells for research and clinical applications.

Learn more:

MACS[®] Cell Separation

Product Portfolio. From benchtop to bedside.

Primary cells from blood products

Blood products differ depending on the processing

Whole Blood

~2x10⁶ PBMCs/mL Volume: variable

Available in different volumes Low PBMC concentration HCT ~44%

Buffy Coat Total PBMC ~5x10⁸

Total PBMC ~5x10^s Volume: 30–80 mL

Waste product after blood donation Higher PBMC concentration HCT ~4-10%

LRSC/Buffy cone

Total PBMC ~1x10⁹ Volume: 10–15 mL

Waste product after plateletpheresis Higher PBMC concentration HCT ~4-10%

Leukopak[®]

Total PBMC ~1x10¹⁰ Volume: 80–200 mL

Largest number of PBMCs High PBMC concentration HCT <3%

Q1: Which starting material do you work with primarily?

Primary cells

Starting material

Blood product

Whole blood/ bone marrow

Buffy coat

Leukopak®

LRSC

Cord blood

Density-gradient centrifugation

Primary cells

Select for downstream application:

- · Positive vs. untouched isolation
- With/without Ficoll™/lysis
- Direct vs. Indirect

- Parallel vs. sequential
- Immediate vs. delayed

Primary cells

Starting material	Sample preparation	MACS cell separation	Downst applica	ream ation
Blood product	Density gradient	Population of interest	Application	Example
Whole blood/	oontinegetion		Additional	Isolation of cell
Buffy coat	PBMCs		Separation	suppopulations
Leukopak [®]		000	Flow cytometry	Immuno-
LRSC		000	i ion cytomolly	phenotyping
Cord blood			Cell culture	Functional <i>in vitro</i> assays
			-omics	RNA sequencing,

technologies

27/10/2022 Webinar Miltenyi Biotec || Density-gradient-free solutions for cell isolation || Kristina Kremer

single-cell sequencing, microarrays

Two ways of human blood cell separation

Let's do a quick experiment

27/10/2022 Webinar Miltenyi Biotec || Density-gradient-free solutions for cell isolation || Kristina Kremer

Density-gradient centrifugation Protocol

2+ hours

Density-gradient centrifugation Drawbacks

You may have experienced:

RBC, platelet and/or granulocyte contamination in separated cells or PBMCs.

Toxicity of Ficoll[™] to White Blood Cells (WBCs).

Ficoll[™] is cumbersome, laborious and takes a lot of time.

Intra- and interoperator variation in the harvesting of the Ficoll[™] interface.

No automation options.

Q2: Which of the described difficulties with density gradients would you like to see solved?

Introducing: Cell isolations directly from your starting material

Isolate PBMCs and primary cells with all the benefits:

No densitygradient centrifugation – Ficoll™-free isolations and no cell counting.

Short, easy protocols with few simple steps.

Positive and untouched isolation strategies for full flexibility. \checkmark

Fastest available workflows for target cells from whole blood, buffy coat, LRSCs and Leukopaks[®].

Automation available for all protocols – little hands-on, high standardization and reproducibility.

Benefits in a nutshell Covid-19 conditions

Two ways of human blood cell separation

Sample to PBMC via density-gradient centrifugation

Positive or untouched isolation from

- Whole blood
- Buffy Coat
- LRSC
- Leukopak[®]

Directly from sample to PBMCs or target cells

Untouched PBMC isolation from blood products Protocol

25-40 minutes From blood to untouched PBMCs

Untouched PBMC isolation from blood products Time comparison

PBMC generation by density-gradient centrifugation from whole blood, buffy coat or Leukopak[®]

New PBMC generation method from 30mL whole blood

15

0

New PBMC generation method from 1 buffy coat or buffy cone

2 3 5	10	20
-------	----	----

New PBMC generation method from 50mL Leukopak®

PBMC Isolation Kit

*semi-automated with MultiMACS™ Cell24 Separator Plus, fully automated with MultiMACS™ X.

27/10/2022 Webinar Miltenyi Biotec || Density-gradient-free solutions for cell isolation || Kristina Kremer

Untouched PBMC isolation from buffy coats Time comparison

PBMC generation by density-gradient centrifugation from whole blood, buffy coat or Leukopak®

*PBMCs are available after 15 min; run time includes a 5-min wash program at the end of the run

27/10/2022 Webinar Miltenyi Biotec || Density-gradient-free solutions for cell isolation || Kristina Kremer

Untouched PBMC isolation from whole blood Exemplary data

PBMC cell type composition (in %)

Singlets	
Viable Cells	7-AAD-
Debris Exclusion	7-AAD-
Leukocytes	7-AAD- CD45+
Monocytes	7-AAD- CD45+ CD14+
- Non-Classical	7-AAD- CD45+ CD14+ CD16+
 Intermediate 	7-AAD- CD45+ CD14++ CD16+
- Classical	7-AAD- CD45+ CD14++ CD16-
B Cells	7-AAD- CD45+ CD14- CD19+
Eosinophils	7-AAD- CD45+ CD14- CD19- SSC hi CD16-
Neutrophils	7-AAD- CD45+ CD14- CD19- SSC hi CD16+
NK Cells	7-AAD- CD45+ CD14- CD19- SSC lo CD3- CD56+
CD3+ T Cells	7-AAD- CD45+ CD14- CD19- SSC lo CD3+
- NKT Cells	7-AAD- CD45+ CD14- CD19- SSC lo CD3+ CD56+
- CD8+ T Cells	7-AAD- CD45+ CD14- CD19- SSC lo CD3+ CD4- CD8+
- CD4+ T Cells	7-AAD- CD45+ CD14- CD19- SSC lo CD3+ CD4+ CD8-
Singlets	
Viable Cells	7-AAD-
Debris Exclusion	7-ΔΔD-
Leukocutes	7-AAD- CD45+
Monocutes	7-44D- CD45+ CD14+
- Non-Classical	7-AAD- CD45+ CD14+ CD16+
- Intermediate	7-AAD- CD45+ CD14++ CD16+
- Classical	7-AAD- CD45+ CD14++ CD16-
B Cells	7-AAD- CD45+ CD14- CD19+
Ensinophils	7-AAD- CD45+ CD14- CD19- SSC hi CD16-
Neutrophils	7-AAD- CD45+ CD14- CD19- SSC hi CD16+
NK Cells	7-AAD- CD45+ CD14- CD19- SSC lo CD3- CD56+
CD3+TCells	7-AAD- CD45+ CD14- CD19- SSC b CD3+
- NKT Cells	7-AAD- CD45+ CD14- CD19- SSC lo CD3+ CD56+
- CD8+ T Cells	7-AAD- CD45+ CD14- CD19- SSC lo CD3+ CD4- CD8+
- CD4+ T Cells	7-AAD- CD45+ CD14- CD19- SSC lo CD3+ CD4+ CD8-

Untouched PBMC isolation from whole blood **Performance comparison**

Sedimentation +

Untouched PBMC isolation from buffy coats Performance comparison

Population	Phenotype	Frequency % among leukocytes
Singlets		
Viable Cells	7-AAD-	
Debris Exclusion	7-AAD-	
Leukocytes	7-AAD- CD45+	
Monocytes	7-AAD- CD45+ CD14+	22.88
 Non-Classical 	7-AAD- CD45+ CD14+ CD16+	2.10
 Intermediate 	7-AAD- CD45+ CD14++ CD16+	8.19
- Classical	7-AAD- CD45+ CD14++ CD16-	11.92
B Cells	7-AAD- CD45+ CD14- CD19+	7.01
Eosinophils	7-AAD- CD45+ CD14- CD19- SSC hi CD16-	0.13
Neutrophils	7-AAD- CD45+ CD14- CD19- SSC hi CD16+	6.65
NK Cells	7-AAD- CD45+ CD14- CD19- SSC to CD3- CD56+	5.51
CD3+ T Cells	7-AAD- CD45+ CD14- CD19- SSC to CD3+	54.55
- NKT Cels	7-AAD- CD45+ CD14- CD19- SSC to CD3+ CD56+	14.76
- CD8+ T Cells	7-AAD- CD45+ CD14- CD19- SSC to CD3+ CD4- CD8+	27.12
- CD4+ T Cells	7-AAD- CD45+ CD14- CD19- SSC to CD3+ CD4+ CD8-	25.46

Ficoll™

Cell type	%-T	Count/mL	Calc Tot
Viable Leukos	63.10	7.84 c+ 05	1.57e+08
Platelets	30.26	3.76c+05	7.52e+07
RBCs	4.07	5.06c+04	1.01e+07
Grans	5.26	6.53c+04	1.31e+07

Population	Phenotype	Frequency % among leukocytes
Singlets		
Viable Cells	7-AAD-	
Debris Exclusion	7-AAD-	
Leukocytes	7-AAD- CD45+	
Monocytes	7-AAD- CD45+ CD14+	21.96
Non-Classical	7-AAD- CD45+ CD14+ CD16+	2.18
Intermediate	7-AAD- CD45+ CD14++ CD16+	8.90
Classical	7-AAD- CD45+ CD14++ CD16-	10.32
3 Cells	7-AAD- CD45+ CD14- CD19+	6.00
iosinophis	7-AAD- CD45+ CD14- CD19- SSC hi CD16-	1.13
Veutrophils	7-AAD- CD45+ CD14- CD19- SSC hi CD16+	0.01
WK Cells	7-AAD- CD45+ CD14- CD19- SSC to CD3- CD56+	5.91
CD3+ T Cells	7-AAD- CD45+ CD14- CD19- SSC to CD3+	61.71
NKT Cells	7-AAD- CD45+ CD14- CD19- SSC to CD3+ CD56+	17.44
CD8+ T Cells	7-AAD- CD45+ CD14- CD19- SSC to CD3+ CD4- CD8+	32.34
CD4+ T Cells	7-MAD- CD45+ CD14- CD19- SSC to CD3+ CD4+ CD8-	27.05

Sedimentation +

Cell type	%-Т	Count/mL	Calc Tot
Viable Leukos	88.57	6.24e+05	1.25 c+ 08
Platelets	9.15	6.45e+04	1.29 c+ 07
RBCs	0.01	6.58e+01	1.32 c+ 04
Grans	0.04	3.14e+02	6.28 c+ 04

A picture is worth a thousand words This is what our customers say

Two ways of human blood cell separation

Sample to PBMC via density-gradient centrifugation

Positive or untouched isolation from

- Whole blood
- Buffy Coat
- LRSC
- Leukopak[®]

Directly from sample to PBMCs or target cells

StraightFrom[®] MicroBead Kits Protocol

30 minutes From blood product to target cells

StraightFrom[®] MicroBead Kits **Protocol for staggering**

Fill blood sample into Add StraightFrom® collection tube **MicroBeads**

Incubation at 4-8°C

15 minutes

StraightFrom[®] Leukopak[®]CD8 MicroBeads

1 minute

13 minutes

CD8⁺ cells

StraightFrom[®] Leukopak[®]CD4 MicroBeads

StraightFrom[®] MicroBead Kits Positive isolation directly from blood products

Simple and fast

- No density-gradient centrifugation
- No cell counting
- No washing after labeling

StraightFrom Leukopak®CD4 MicroBead Kit

StraightFrom® Buffy Coat MicroBeads – Exemplary data

Marker*	Purity (%)
CD3	97
CD4/CD8	98
CD4	96
CD8	95
CD14	98
CD19	95
CD56	96

*Long list of markers available on website and continuously new releases

NEW
StraightFrom[®] Buffy Coat REAlease[®]
MicroBead Kits, human

StraightFrom[®] MicroBead Kits Performance data – activation marker analysis

StraightFrom[®] Buffy Coat CD4, CD8, CD4/CD8 MicroBeads

- Cells show no upregulation of activation markers
 - > No activation after separation
- Successful activation upon stimulation with TransAct

Learn more:

CAR T cell engineering workflow with StraightFrom® Application highlight

CAR T cell engineering workflow with StraightFrom[®] Isolation of T cells from blood products

MACS® MicroBeads versus StraightFrom® MicroBeads: same results, much faster

1. From PBMCs:

MACS[®] MicroBeads (or Isolation Kits)

- Skip density gradient centrifugation
- ✓ From blood to highly pure T cells within 30 min.
- ✓ Whole blood, buffy coat, LRSC, Leukopak[®]

CAR T cell engineering workflow with StraightFrom® Isolation of T cells from blood products

MACS® MicroBeads versus StraightFrom® MicroBeads: same results, much faster

Two ways of human blood cell separation

Directly from sample to PBMCs or target cells

Automated high quality cell separation

Automation improves efficiency in everyday cell processing:

- Standardization no user variability or human errors
- Reproducibility the same protocol, the same results, same performance every time
- Efficiency less hands-on time allows you to work on more important tasks
- User safety reduce contaminations and employee exposure to samples

Run fewer redundant experiments, focus your time and energy where it matters

autoMACS® Pro Separator

Intuitive and easy-to-use automation for a multi-user lab

- Sequential separation of 1-6 samples per run
- Re-usable columns reduce costs and allow larger samples to be processed in one run
- Perfect fit for automated isolation of PBMCs from whole blood and buffy coats
- Perfect match to isolate target cells from PBMCs

MultiMACS™ Cell24 Separator Plus

Parallel cell separation of large sample numbers and high sample volumes

- Semi-automated cell separation
- Scalable sample throughput fits every workflow:
 1-24 samples in one run
- Compatible with manual columns and Multi-24
 Column Block
- Use the 24 magnets as individual magnets for small samples, or as one for large-volume samples such as buffy coats and Leukopaks[®]
- Tailored programs for isolations of cell
 subpopulations directly from blood products

MultiMACS™ X

Fully automated cell isolation for the demanding high-throughput cell processing laboratory

- Full automation of all relevant cell isolation workflows – PBMC and cell subpopulation isolation from Leukopaks[®], Buffy Coats, Whole Blood and LRSCs
- Fully automated sample and buffer handling, magnetic labeling and separation
- Tailored programs ensure the perfect fit into your protocols, including preparation of downstream applications

Automated solutions for every blood product

13

Summary

- Reliable assay results depend on the right cell preparation steps and isolation strategies
- Automated solutions and Ficoll[™]-free protocols reduce human error and improve efficiency
- With Miltenyi Biotec's new density-gradient-free solutions you can isolate target cells or PBMCs directly from blood products in as little as 25 min

Disclaimer

Unless otherwise specifically indicated, Miltenyi Biotec products and services are for research use only and not for therapeutic or diagnostic use.

autoMACS, MACS, the Miltenyi Biotec logo, MultiMACS, REAlease, StraightFrom and TransAct are registered trademarks or trademarks of Miltenyi Biotec and/or its affiliates in various countries worldwide.

Ficoll, Ficoll-Paque, and Percoll are trademarks of GE Healthcare companies.

Leukopak is a registered trademark of StemExpress LCC.

Copyright © 2020 Miltenyi Biotec and/or its affiliates. All rights reserved.

kristinakr@miltenyi.com 🖂 www.miltenyibiotec.com

